Climbing RAILSCAF ${ }^{\text {M }}$
horizontal and inclined ($<60^{\circ}$) monorail system

Tractel Secalt ${ }^{\text {™ }}$ Monorails

1. Description

Applications
Advantages
,
2. Technical specifications

Mechanical specifications
Type of rail protection

Traversing trolley
 3

Safety devices 4
Configurations 4
3. Installation on Site 5
Packaging 5
Connections between rails 5
Wall brackets 6
Rail end stop 7
Examples of layout 8

Climbing RAILSCAF ${ }^{\text {TM }}$

1. DESCRIPTION

Applications

The climbing RAILSCAF ${ }^{\text {TM }}$ is a system for maintenance of facades. It consists of a monorail fixed to the perimeter of the building, one or two trolleys running on the monorail and a cradle suspended from the trolley(s).
The trolley is motorized and moves in a horizontal plane and on slopes (up to 60°). For operating on inclined section the monorail is provided with an integrated linked chain. The pinion of the trolley engages automatically with the chain when switching to a sloped section.

Advantages

- Rigid and aesthetic profile.
- Installation costs minimized by long reach between brackets (3 m).
- Brackets for any type of facade.
- Trolleys are robust and reliable.
- Horizontal and vertical bending.
- Curves with small radius $\mathrm{R}=700 \mathrm{~mm}$.
- Slope angle up to 60°.
- Combination with all cradles manufactured by Tractel Secalt ${ }^{\text {TM }}$ (ALTA or SOLO) or SOLSIT work seats.

Fig. 1. - Climbing RAILSCAFTM profile, $120 \times 45 \mathrm{~mm}$

2. TECHNICAL SPECIFICATIONS

Mechanical specifications

Max. load per trolley	350 kg
Aluminum profile	$120 \times 45 \mathrm{~mm}$.
Standard length $5,800 \mathrm{~mm}$ Weight $7.6 \mathrm{~kg} / \mathrm{m}$ Minimum horizontal bending radius (external / internal) Minimum vertical bending radius $\mathrm{R}=700 \mathrm{~mm}$ Max. span between 2 brackets $3,560 \mathrm{~mm}$ Chain (inclined section only) ASA $3 / 4$ " $\times 1 / 2$ "	

The deformation of the rail under a load of 350 kg is less than $1 / 250$ of the span, or less than 12 mm .

Type of rail protection

Protection by anodizing (optional)

Protection by anodizing protects against corrosion by creating a film of aluminum oxide, 20 microns thick.
The colors available are:
Natural aluminum
Gold
Dark beige Eurocolor 2006
Light Beige Eurocolor 2005
Chestnut Eurocolor 2007
Black Eurocolor 2008
Protection by powder coating (optional)
The colors available match the RAL range matt or gloss (sample on request). manufactured under ISO 9001 conditions.

technical sheet

> Climbing RAILSCAF ${ }^{\top \mathrm{M}}$
> horizontal and inclined $\left(<60^{\circ}\right)$ monorail system

Traversing trolley

The trolley is made up of a gear motor with main brake backed up by a fall prevention device (secondary over speed brake) and a set of rollers and sliding pads enclosed in a stainless steel casing, enabling perfect traversing and guiding on the monorail, as well in the curves and on slopes.
A toothed wheel passes the power onto the linked chain in the monorail when switching onto a gradient.

Motor specifications

Type: geared motor completely closed brake
Weight
71 kg
$\pm 6 \mathrm{~m} / \mathrm{min}$
three-phase power supply 230/400 V,
0.75 kW

Degree of protection
IP55

Insulation class	F
Code (open circuit)	25149

Code (closed circuit) 25159

Main components

Fig. 2. - RAILSCAF ${ }^{T M}$ chain driven climbing trolley (model shown: open circuit)

Trolley
1.1 Trolley / cradle connector
1.2 Cable sleeve
1.3 Power supply cable

2 Traversing end limit switch
3 Over-speed detection (fall prevention)
Gears
Upper roller
Roller with chain pinion
Overspeed fall arrest safety device
Reset lever overspeed fall arrest safety device
Sliding pads
10 Swiveling anchor point
13 Climbing RAILSCAF™ rail
4 Motor drive

Climbing RAILSCAF™
 horizontal and inclined ($<60^{\circ}$) monorail system

sheet
 Technical

Safety devices

End of travel

Traversing is stopped at the end of the track when it approaches an end stop buffer (in case of open rail track).

Over-speed detection (fall prevention)

- Triggered by over-speed
- Fully ALUMINIUM + STAINLESS STEEL
- Transparent window for checking good mobility of the flyweight spring control.

Electromagnetic brake

In the event of a power failure during traversing, the electromagnetic brake integrated in the motor drive (14) automatically closes. It also closes each time the LEFT or RIGHT pushbuttons are released.

Configurations

The RAILSCAF ${ }^{\text {TM }}$ climbing trolley can be used with cradles with one or two suspension points (always with two cables per suspension point). A cradle with two suspension points requires two RAILSCAF ${ }^{\text {M }}$ climbing trolleys synchronized by a connecting rod.
The power supply and control of the trolley(s) are performed from the control unit of the cradle suspended from the trolley(s).

1. Climbing RAILSCAF ${ }^{\text {TM }}$ using SOLO cradle

Main components

2 Traversing limit switch
10 Pivoting anchor point
11 Connecting rod (optional)
11.1 Speed synchronization by two limit switches
23 Lifting wire rope
24 Safety wire rope

Fig. 3. - Climbing RAILSCAF ${ }^{\text {TM }}$ with SOLO cradle or SOLSIT work seat. .
2. Climbing RAILSCAF ${ }^{\top M}$ using ALTA cradle

Fig. 4. - Climbing RAILSCAF ${ }^{\text {TM }}$ with ALTA cradle

technical sheet

Climbing RAILSCAF ${ }^{\text {M }}$
horizontal and inclined ($<60^{\circ}$) monorail system

3. INSTALLATION ON SITE*

Packaging

The rails are delivered on site in bars of 5.80 m long and weighing $\pm 44 \mathrm{~kg}$. Curves are pre-bent in the factory. On the bent parts, chains are inserted at the factory.

Connections between rails

All connections must be carried out at a maximum distance of 500 mm from the wall bracket.
Pinning is only done on one side, and in principle in the
slot on the side facing the facade (i.e. on the bracket
side).

Fig. 5. - Fixed connection

$8 \quad \varnothing 16 \times 1,9 \times 35$ Spacers (4)
9 Wall bracket

Fig. 6. - Expansion connection

[^0]> Climbing RAILSCAFTM
> horizontal and inclined $\left(<60^{\circ}\right)$ monorail system

Wall brackets*

The monorail is secured on galvanized or stainless steel brackets, which are positioned every 3 m on the straight sections. Their location in the curves and corners of facade must be studied in relation with the configuration of the building.
The bracket fixing plate allows $\mathrm{a} \pm 7 \mathrm{~mm}$ vertical adjustment.
The rails are fixed to the brackets with hammerhead M12 hot galvanized 8.8 steel bolts.

* Special bracket for all types of facade on request

Maximum Performance

			Reactions (per anchor) in daN			
			Nominal		Ultimate	
	Nom. load. (daN)	Max. span $\mathrm{L}_{\text {Max. }}(\mathrm{Mm})$	Rh	Rv	Rh	Rv
SOLO	350	950	**	**	**	**
ALTA	700	700	**	**	**	**

** The Rh and Rv reactions depend on the slope of the rail.

Fig. 7. - RAILSCAF ${ }^{\text {TM }}$ bracket with four threaded rods

Fig. 8. - Bracket for inclined RAILSCAF ${ }^{\top M}$ with four chemical anchors ${ }^{* * *}$ (concrete $30 \mathrm{~N} / \mathrm{mm}^{2}$).

[^1]
technical sheet

Climbing RAILSCAF ${ }^{\text {TM }}$
 horizontal and inclined ($<60^{\circ}$) monorail system

Fig. 9. - Bracket for inclined RAILSCAF ${ }^{\text {TM }}$ with four chemical anchors* (concrete $30 \mathrm{~N} / \mathrm{mm}^{2}$)

* For installation and tightening torque on the chemical anchor, please comply with manufacturer's instructions.

Drilling template

Fig. 10. - RAILSCAF ${ }^{\text {M }}$ bracket - drilling template

Rail end stop

On «open» trackways an end stop must be fitted to both ends of the monorail. These removable stops are bolted onto the rail.
Traversing limit switches (12) mounted on the trolley, automatically stop it when it approaches an end stop buffer.

Fig. 11. - Securing to outer corners of the building

Fig. 12. - Inclined monorail with trolley, end stops (13.3) and traversing limit switches (12).

Examples of layout

technical sheet
 horizontal and inclined ($<6 \mathbf{0}^{\circ}$) monorail system

\#\#\#
Connections exclusively in the grid areas.
Curve over 3 or 4 brackets without intermediate connection.
Straight section over at least two brackets without intermediate connection.
Chain pitch in curves.
Fig. 17. - $2 \times 60^{\circ}$ for horizontal profile.
External and internal bending
Developed length curved or straight section: 5,800 mm max.

Fig. 18. $-2 \times 90^{\circ}$ for horizontal profile.
External and internal bending
Developed length curved or straight section: 5,800 mm max.

```
technical
sheet
horizontal and inclined (<60') monorail system
```

Climbing RAILSCAF ${ }^{T M}$
horizontal and inclined ($<60^{\circ}$) monorail system

Fig. 20. - 60° slope.
Developed length:
Connection
$\mathrm{min} .3,868 \mathrm{~mm} / 5,800 \mathrm{~mm}$ max.
Minimum bending radius:
1.5 mm play

Straight or curved
$R=1,500 \mathrm{~mm}$

$$
\mathrm{R}=1,500 \mathrm{~mm} \quad \text { Bracket }
$$

Climbing RAILSCAFTM sheet horizontal and inclined ($<6 \mathbf{0}^{\circ}$) monorail system

Contact

Tractel Secalt S.A.
3, rue du Fort Dumoulin P.O. box 1113 • L-1011 Luxembourg

Phone: (352) 4342 42-1
Fax (352) 4342 42-200
e-mail: secalt @ tractel.com
www.tractel.com

[^0]: * Comment: the instructions in this document are to be followed if there is no differing information on the lay-out drawing

[^1]: *** To install the anchors, please comply with the manufacturer's installation instructions.

